Lesson 3. Confidence Intervals – Part 1

1 Populations vs. samples

Example 1. Suppose researchers are interested in estimating the average BMI (body mass index) of American men over the age of 18. The researchers obtain a random sample of 422 men and calculate a mean BMI of 28.0 kg/m^2 . Further suppose the standard deviation of all American men BMIs is known to be 5.4 kg/m².

	Definition	For Example 1
population	All individuals in the group of interest.	
parameter	Numerical characteristic of the population distribution. Fixed value. Does not depend on data.	
sample	A collection of independent, identically distributed (i.i.d) r.v.s.	
data	An observed sample; actual numbers.	
statistic (estimator)	A function of the random variables in the sample. Used to estimate a parameter.	
observed statistic (estimate)	The numerical value of a statistic, calculated with data values.	

• A parameter describes a population, while a statistic describes a sample

• Examples of statistics:

	statistic (estimator)	observed statistic (estimate)
sample mean		
sample standard deviation		

- A simple random sample (SRS) is a subset of the population, chosen randomly such that
 - each individual has the same chance of being chosen, and
 - all subsets of the same size have the same chance of being chosen

2 Confidence intervals

- We can use the sample mean to get a **point estimate** of the population mean, but...
- Usually, we would also like to get an interval estimate, a range of plausible values that includes a margin of error
- The most general form of an interval estimate is
- The margin of error is composed of the critical value times a standard error (SE) term:
- 2.1 CI for population mean when population variance (σ^2) is known
 - Suppose $x_1, ..., x_n$ is data from a simple random sample from a population with <u>unknown mean</u> μ and <u>known</u> variance σ^2
 - The $(1 \alpha)100\%$ CI for the population mean is

$$\bar{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

where

α = significance level	$1 - \alpha = $ confidence level
\bar{x} = sample mean (estimate)	σ = population standard deviation
$z_{\alpha/2} = (1 - \alpha/2)$ -quantile of $N(0, 1)$	n = sample size

• Interpretation – if the $(1 - \alpha)100\%$ CI for the population mean is (ℓ, u) :

We are $100(1-\alpha)$ % confident that the population mean is between ℓ and u.

The underlined parts should be rephrased to correspond to the specific CI and data

Example 2.

- a. Based on Example 1, calculate a 95% confidence interval for the mean BMI of all American men. Note that $z_{0.025} = 1.96$.
- b. Interpret your interval from part **a**.

2.2 What does it mean to be "95% confident"?

- "95% confidence" means that if we were to repeatedly take samples of size n and construct the corresponding confidence intervals, 95% of the intervals would contain the true population mean μ
- The probability that the process of forming a CI will capture μ is 0.95
- It is NOT correct to say that the probability we captured μ with our particular CI estimate is 0.95

2.3 CI for population mean when population variance (σ^2) is unknown

- Now suppose $x_1, ..., x_n$ is data from a simple random sample from a population with <u>unknown mean</u> μ and unknown variance σ^2
- The $(1 \alpha)100\%$ CI for the population mean is

$$\bar{x} \pm t_{\alpha/2,n-1} \frac{s}{\sqrt{n}}$$

where

 α = significance level $1 - \alpha$ = confidence level \bar{x} = sample mean (estimate)s = sample standard deviation (estimate) $t_{\alpha/2,n-1} = (1 - \alpha/2)$ -quantile of t(n-1)n = sample size

• Interpretation – if the $(1 - \alpha)100\%$ CI for the population mean is (ℓ, u) :

We are $100(1-\alpha)$ % confident that the population mean is between ℓ and u.

The underlined parts should be rephrased to correspond to the specific CI and data

2.4 Why is the *t*-distribution used when the population variance is unknown?

When σ^2 is known:

• Central Limit Theorem says $\tilde{X} \sim N(\mu, \sigma^2)$

$$\Rightarrow \quad \frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1)$$

 $\frac{\bar{X}-\mu}{s/\sqrt{n}}\sim t(n-1)$

 \Rightarrow Critical value from N(0,1)

⇒ Critical value from
$$t(n-1)$$

When σ^2 is unknown:

=

• It can be shown that

2.5 Technical conditions to check

• Two things must be met for the above CI formulas to be appropriate:

